HW - Chapter 7 - Capital Budgeting- Q4

(a)
(i) Payback Period

Project A: Rs. 10,000 \div Rs. 10,000 = 1 year
Project B: Rs. 10,000 \div Rs. 7,500 $=1.33$ years
Project C: 2 years $+4,000 \div 12000=2.33$ years
Project D: 1 year

(ii) ARR (Figures in Rs.)

Average Cash Flows = Cash flow of each year \div Life
Project A: $\quad 10,000 \div 1=$ Rs. 10,000
Project B: $\quad 7,500+7500 \div 2=$ Rs. 7,500
Project C: $\quad 2,000+4000+12,000 \div 3=$ Rs. 6000
Project D: $\quad 10,000+3000+3000 \div 3=5,333$

Depreciation

Project A: $\quad 10,000 \div 1=$ Rs. 10,000
Project B: $\quad 10,000 \div 2=$ Rs. 5,000
Project C: $\quad 10,000 \div 3=$ Rs. 3,333
Project D: $\quad 10,000 \div 3=$ Rs. 3,333

Average PAT = Average Cash Flows i.e. Sales less VC less FC - Depreciation

Project A: $\quad 10,000$ - Rs. 10,000 = Rs. 0
Project B: $\quad 7,500-5000=$ Rs. 2,500
Project C: 6000-3333-Rs. 2667
Project D: 5,333-3333 = Rs 2,000

ARR = Average PAT \div Average investment $\mathbf{x} 100$

Project A: Rs. $0 \div 5,000=0 \%$
Project B: Rs. 2,500 $\div 5,000=50 \%$
Project C: Rs. $2667 \div 5,000=53 \%$
Project D: Rs 2,000 $\div 5,000=40 \%$
(iii) IRR

Project A:	The net cash proceeds in year 1 are just equal to investment. Therefore, $r=$ 0%.
Project B:	This project produces an annuity of Rs. 7,500 for two years. Therefore, the required PVAF is: Rs. 10,000/Rs. 7,500 = 1.33. This factor is found under the 32% column. Therefore, $r=32 \%$

The more your money works for you, the less you have to work for money.

Project C:	Since cash flows are uneven, the trial and error method will be followed. Using 20\% rate of discount, the NPV is + Rs. 1,389. At a 30\% rate of discount, the NPV is - Rs. 633. The true rate of return should be less than 30\%. At 27\% rate of discount, it is found that the NPV is - Rs. 86 and +Rs. 105 at 26\%. Through interpolation, we find $r=26.5 \%$
Project D:	In this case also by using the trial and error method, it is found that at 37.6% rate of discount, NPV becomes almost zero. Therefore, $r=37.6 \%$.

(iv) NPV

Project A: at $10 \%=-10,000+10,000 \times 0.909=-910$ at $30 \%=-10,000+10,000 \times 0.769=-2,310$
Project B: at $10 \%=-10,000+7,500(0.909+0.826)=+3,013$ at $30 \%=-10,000+7,500(0.769+0.592)=+208$
Project C: at $10 \%=-10,000+2,000 \times 0.909+4,000 \times 0.826+12,000 \times 0.751=+4,134$ at $30 \%=-10,000+2,000 \times 0.769+4,000 \times 0.592+12,000 \times 0.455=-633$
Project D: at $10 \%=-10,000+10,000 \times 0.909+3,000 \times(0.826+0.751)=+3,821$
at $30 \%=-10,000+10,000 \times 0.769+3,000 \times(0.592+0.455)=+831$

The projects are ranked as follows according to the various methods:

Projects	PBP	ARR	IRR	NPV (10\%)	NPV (30\%)
A	1	4	4	4	4
B	2	2	2	3	2
C	3	1	3	1	3
D	1	3	1	2	1

(b) Payback and ARR are theoretically unsound methods for choosing between the investment projects.
Between the two time-adjusted (DCF) investment criteria, NPV and IRR, NPV gives consistent results. If the projects are independent (and there is no capital rationing), either IRR or NPV can be used since the same set of projects will be accepted by any of the methods. In the present case, except Project A all the three projects should be accepted if the discount rate is 10%. Only Projects B and D should be undertaken if the discount rate is 30%.

If it is assumed that the projects are mutually exclusive, then under the assumption of a 30\% discount rate, the choice is between B and D (A and C are unprofitable). Both criteria IRR and NPV give the same results - D is the best. Under the assumption of 10% discount rate, ranking according to IRR and NPV conflict (except for Project A). If the IRR rule is followed, Project D should be accepted. But the NPV rule tells that Project C is the best. The NPV rule generally gives consistent results in conformity with the wealth maximization principle. Therefore, Project C should be accepted following the NPV rule.

